Ask the Experts: Building a Toolkit for Managing Heart Failure

Presented as a Live Webinar
Wednesday, March 6, 2019
2:00 - 3:00 p.m.

On-demand Activity
Recording of live webinar
Release date: April 27, 2019
Expiration date: April 27, 2020

ACCREDITATION
The American Society of Health-System Pharmacists is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education.

- ACPE #: 0204-0000-19-405-L01-P
- 1.0 hr, application-based

CE Processing
Participants will process CPE credit online at http://elearning.ashp.org/my-activities. CPE credit will be reported directly to CPE Monitor. Per ACPE, CPE credit must be claimed no later than 60 days from the date of the live activity or completion of a home-study activity.

WEBINAR INFORMATION
Visit www.ashpadvantagemedia.com/chf/experts to find
- Webinar registration link
- Group viewing information and technical requirements

FACULTY
Robert J. DiDomenico, PharmD, FCCP, FHFS, FACC
Associate Professor
College of Pharmacy
University of Illinois at Chicago
Chicago, Illinois

Tien M.H. Ng, Pharm.D., FHFS, FCCP, BCPS (AQ Cardiology), FACC
Associate Professor
Clinical Pharmacy
University of Southern California
School of Pharmacy
Los Angeles, California

View faculty bios at www.ashpadvantagemedia.com/chf/experts

Provided by ASHP
Supported by an educational grant from Novartis Pharmaceuticals Corporation
Ask the Experts

Building a Toolkit for Managing Heart Failure

Robert J. DiDomenico, Pharm.D., BCPS AQ Cardiology, FCCP, FHFS, FACC
Associate Professor, University of Illinois at Chicago
College of Pharmacy
Chicago, Illinois

Tien M.H. Ng, Pharm.D., BCPS AQ Cardiology, FACC, FCCP, FHFS
Associate Professor, University of Southern California
School of Pharmacy and Keck School of Medicine
Los Angeles, California

Disclosures

In accordance with ACCME and ACPE Standards for Commercial Support, ASHP policy requires that all faculty, planners, reviewers, staff, and others in a position to control the content of this presentation disclose their relevant financial relationships.

- In this activity, no persons associated with this activity have disclosed any relevant financial relationships.
Learning Objectives

• Identify clinical controversies & barriers leading to suboptimal use of guideline-directed medical therapy (GDMT) regimens for patients with heart failure with reduced ejection fraction (HFrEF).
• Develop plans to optimize GDMT regimens for patients with HFrEF.
• Adopt strategies to overcome barriers to implementing successful transitions of care programs for patients with HFrEF hospitalized for acute heart failure.

Abbreviations

• ACEI=angiotensin converting-enzyme inhibitor
• ADEs=adverse drug events
• ARB=angiotensin receptor blocker
• ARNI=angiotensin receptor-neprilysin inhibitor
• BID=twice daily
• BP=blood pressure
• BUN=blood urea nitrogen
• CI=confidence interval
• COR=class of recommendation
• CrCl=creatinine clearance
• CV=cardiovascular
• Non-DHP CCB=non-dihydropyridine calcium channel blocker
• ED=emergency department
• eGFR=estimated glomerular filtration rate
• EMR=electronic medical record
• GDMT=guideline-directed medical therapy
• HF=heart failure
• HFrEF=heart failure with reduced ejection fraction
• HYD=hydralazine
• HR=heart rate
• ISDN=isosorbide dinitrate
• LVEF=left ventricular ejection fraction
• MTM=medication therapy management
• MRA=mineralocorticoid receptor antagonist
• NSAIDs=non-steroidal anti-inflammatory drugs
• NSR=normal sinus rhythm
• NYHA=New York Heart Association
• OACs=oral anticoagulants
• PCPs=primary care providers
• RR=respiratory rate
• TOC=transitions of care
Clinical Barriers and Controversies in Heart Failure

Tien M.H. Ng, Pharm.D., BCPS AQ Cardiology, FACC, FCCP, FHFSA
Associate Professor of Clinical Pharmacy and Medicine
Director, PGY2 Residency in Cardiology
Vice Chair, Titus Family Department of Clinical Pharmacy
School of Pharmacy and Keck School of Medicine
University of Southern California, Los Angeles, California

HF in 2019

• #big problem, #long way to go
• Prevalence: 5.7 million (U.S.)
• Annual mortality: 75,251

• Lifetime risk @ age 45 years:
 1 in 2-5

Heart Failure Stages

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High risk for HF but without structural heart disease or symptoms of HF</td>
<td>Structural heart disease but without signs or symptoms of HF</td>
<td>Structural heart disease with prior or current symptoms of HF</td>
<td>Refractory HF requiring specialized interventions</td>
</tr>
<tr>
<td></td>
<td>ACEI or ARB in appropriate patients for vascular disease/diabetes mellitus</td>
<td>ACEI or ARB</td>
<td>Diuretic ACEI or ARB (or ARNI)</td>
<td>Diuretic or ARB (or ARNI)</td>
</tr>
<tr>
<td></td>
<td>Beta-blocker</td>
<td>Beta-blocker</td>
<td>Beta-blocker</td>
<td>Beta-blocker</td>
</tr>
<tr>
<td></td>
<td>Statins as appropriate</td>
<td>MRA</td>
<td>MRA</td>
<td>MRA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected patients:</td>
<td>ACEI or ARB (or ARNI)</td>
<td>Selected patients:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HYD/ISDN</td>
<td>Beta-blocker</td>
<td>HYD/ISDN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digitalis</td>
<td>MRA</td>
<td>Digitalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ivabradine</td>
<td>selected patients</td>
<td>Ivabradine</td>
</tr>
</tbody>
</table>

Pharmacological Treatment for Stage B HFrEF

HFrEF Stage B NYHA I

- Class I, LOE A
 - ACEI or ARB
- Class I, LOE B/C
 - Beta-blocker
- Class III: Harm, LOE B
 - Non-DHP
 - CCB

Pharmacological Treatment for Stage C HF With Reduced Ejection Fraction

- HFrEF Stage C
 - NYHA I-IV
 - ACEI or ARB* + Beta-blocker; diuretic as needed (COR I)

- NYHA II-IV, K<5.0, CrCl >30
 - MRA (COR I)

- NYHA II-III, BP okay
 - Switch to ARNI (COR I)

- NYHA III-IV, Black patients
 - HYD/ISDN (COR I)

- NYHA II-III, NSR, HR ≥70
 - Ivabradine (COR IIa)

*HYD/ISDN for ACEI/ARB intolerant

Titrating GDMT

- Generally, consider titrating doses of GDMT every 2 weeks

<table>
<thead>
<tr>
<th>Drug</th>
<th>Starting Dose</th>
<th>Target Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisoprolol</td>
<td>1.25 mg daily</td>
<td>10 mg daily</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>3.125 mg twice daily</td>
<td>25-50 mg twice daily</td>
</tr>
<tr>
<td>Metoprolol succinate</td>
<td>12.5-25 mg daily</td>
<td>200 mg daily</td>
</tr>
<tr>
<td>Sacubitril/valsartan</td>
<td>24/26-49/51 mg twice daily</td>
<td>97/103 mg twice daily</td>
</tr>
<tr>
<td>Captopril</td>
<td>6.25 mg three times daily</td>
<td>50 mg three times daily</td>
</tr>
<tr>
<td>Enalapril</td>
<td>2.5 mg twice daily</td>
<td>10-20 mg twice daily</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>2.5-5 mg daily</td>
<td>20-40 mg daily</td>
</tr>
<tr>
<td>Candesartan</td>
<td>4-8 mg daily</td>
<td>32 mg daily</td>
</tr>
<tr>
<td>Losartan</td>
<td>25-50 mg daily</td>
<td>150 mg daily</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>12.5-25 mg daily</td>
<td>25-50 mg daily</td>
</tr>
<tr>
<td>Eplerenone</td>
<td>25 mg daily</td>
<td>50 mg daily</td>
</tr>
<tr>
<td>Hydralazine/isosorbide dinitrate</td>
<td>25/20 mg three times daily</td>
<td>75/40 mg three times daily</td>
</tr>
</tbody>
</table>

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
Mortality Reduction in HFrEF

- ACEIs/ARBS: 18%
- Beta-blockers: 35%
- Hydralazine/isosorbide dinitrate: 43%
- Mineralocorticoid receptor antagonists: 30%
- Sacubitril/valsartan: 20%

Clinical Controversies and Barriers to Medication Optimization

- HP is a 67-year-old female with a history of HFrEF (LVEF 18%) being seen for the first time in clinic after a recent hospitalization. She remains in NYHA functional class III.
- Current medications: enalapril 10 mg once daily, metoprolol tartrate 25 mg twice daily, furosemide 20 mg once daily
- Vitals: BP 89/67 mm Hg, HR 84 bpm, RR 18 breaths/min
- Pertinent labs:
 - Sodium 136 mEq/L, potassium 4.8 mEq/L, creatinine 1.22 mg/dL, BUN 23 mg/dL, eGFR 46 mL/min/m²
 - NT-proBNP 4,300 pg/mL

➤ HOW DO WE FURTHER OPTIMIZE CARE FOR THIS PATIENT?
Which Beta-blocker?

Beta-blocker Pharmacology Comparison

<table>
<thead>
<tr>
<th></th>
<th>Carvedilol</th>
<th>Metoprolol succinate</th>
<th>Metoprolol tartrate</th>
<th>Bisoprolol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology</td>
<td>β_1, β_2, α_1</td>
<td>β_1</td>
<td>β_1</td>
<td>β_1</td>
</tr>
<tr>
<td>Half-life (hours)</td>
<td>7-10</td>
<td>3-7</td>
<td>3-4</td>
<td>9-12</td>
</tr>
<tr>
<td>Duration of action (hours)</td>
<td>12</td>
<td>24</td>
<td>8-12</td>
<td>24</td>
</tr>
<tr>
<td>Others</td>
<td>Antioxidant, ↓Insulin resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hemodynamics, degree of neurohormonal blockade, cardioprotection?

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
Carvedilol Or Metoprolol European Trial (COMET)

- N=1511 HFrEF, NYHA II-IV
- Carvedilol 25 mg twice daily (41.8 mg/day) vs. metoprolol tartrate 50 mg twice daily (85 mg/day)

<table>
<thead>
<tr>
<th>%</th>
<th>Carvedilol</th>
<th>Metoprolol</th>
<th>Hazard Ratio (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>34</td>
<td>40</td>
<td>0.83 (0.74–0.93)</td>
</tr>
<tr>
<td>CV death</td>
<td>29</td>
<td>35</td>
<td>0.80 (0.70–0.90)</td>
</tr>
<tr>
<td>Death or hospital admission</td>
<td>74</td>
<td>76</td>
<td>0.94 (0.86–1.02)</td>
</tr>
</tbody>
</table>

Carvedilol or Metoprolol Evaluation Study

- N=14,016 Norwegian HF and German HF registries
- Selecting 740 propensity-score matched pairs, comparing carvedilol vs. metoprolol succinate (at equivalent doses)

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
Approach to Beta-blocker Selection

<table>
<thead>
<tr>
<th></th>
<th>Carvedilol immediate release</th>
<th>Metoprolol succinate</th>
<th>Bisoprolol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adherence</td>
<td>Controlled release</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Low BP</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>High BP</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence-based</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Target doses</td>
<td>25-50 mg twice daily</td>
<td>200 mg once daily</td>
<td>10 mg once daily</td>
</tr>
</tbody>
</table>

If you must use metoprolol tartrate, use at least 75 mg twice daily

ARNI or not to ARNI?
Angiotensin Receptor and Neprilysin Inhibitor (ARNI)

Valsartan + Sacubitril

Attenuate negative effects of angiotensin II

Boost positive effects of the natriuretic peptides (& other vasodilatory peptides)

PARADIGM-HF – Study Design

Single-blind Active Run-in Period

- Enalapril 10 mg BID Run-in
- Sac/Val 100 mg BID Run-in
- Sac/Val 200 mg BID Run-in

Double-blind Treatment Period

- Sac/Val 200 mg BID
- Enalapril 10 mg BID

2 weeks 1-2 weeks 1-2 weeks

Sac/Val = sacubitril/valsartan

PARADIGM-HF - Results

<table>
<thead>
<tr>
<th>%</th>
<th>Sac/Val (n=4187)</th>
<th>Enalapril (n=4212)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoint</td>
<td>21.8</td>
<td>26.5</td>
<td>0.80 (0.73-0.87)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>13.3</td>
<td>16.5</td>
<td>0.80 (0.71-0.89)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hospitalization for HF</td>
<td>12.8</td>
<td>15.6</td>
<td>0.79 (0.71-0.89)</td>
<td><0.001</td>
</tr>
<tr>
<td>Symptomatic Hypotension</td>
<td>14.0</td>
<td>9.2</td>
<td></td>
<td><0.001</td>
</tr>
</tbody>
</table>

Perceived Barriers to ARNI

- Cost, access
 - Patient assistance program:
 - Be a U.S. resident
 - Meet income requirements
 - Have limited or no private or public prescription coverage

- Clinical
 - Risk of hypotension
 - Twice daily regimen
 - Risk of angioedema
 - Risk of renal dysfunction
PARADIGM-HF Stratified

- Systolic blood pressure (Eur Heart J. 2017; 38:1132–43.)
 - Low systolic BP (<110 mm Hg) was associated with increased risk for primary endpoint and all-cause mortality
 - Similar tolerability and benefit compared to enalapril

- LVEF (Circ Heart Fail. 2016; 9:e002744.)
 - Lower LVEF was associated with increased risk of primary endpoint and all-cause mortality
 - Similar benefit compared to enalapril regardless of LVEF

PARADIGM-HF and Hypotension

<table>
<thead>
<tr>
<th>Single-blind Active Run-in Period</th>
<th>Double-blind Treatment Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enalapril 10 mg BID Run-in</td>
<td>Sac/Val 200 mg BID</td>
</tr>
<tr>
<td>Sac/Val 100 mg BID Run-in</td>
<td>Enalapril 10 mg BID</td>
</tr>
<tr>
<td>Sac/Val 200 mg BID Run-in</td>
<td></td>
</tr>
</tbody>
</table>

2 weeks 1-2 weeks 1-2 weeks

10513

10377

136 (1.3%) → 43 → 6 (14%)

8442

976 (11.6%)

588 (14.0%) Sac/Val

388 (9.2%) Enalapril

9419

228 (2.4%)

PARADIGM-HF and Hypotension

Predictors:
- Lower systolic BP
- Older age
- ICD implanted
- Higher creatinine
- Atrial fibrillation history
- North America
- Diabetes

Outcomes:
- Study drug did not affect predictors of hypotension (except diabetes – higher risk in enalapril arm)
- Similar benefit compared to enalapril in those that experienced hypotension

Real World vs. Clinical Trial

PARADIGM-HF exclusion criteria:
- eGFR ≤30 mL/min/m²
- Systolic BP ≤100 mm Hg
- Potassium ≥5.2 mmol/L
- Not on ACEI (enalapril 10 mg/day or equivalent)

Cleveland Clinic analysis
- Met FDA criteria: 71%
- Met PARADIGM-HF criteria: 26%

Perez AL et al. *JACC Heart Fail.* 2017; 5:460-3.
PIONEER-HF

- Assess safety and efficacy of sacubitril/valsartan initiation among patients hospitalized for acute heart failure after hemodynamic stabilization
- Sacubitril–valsartan target dose 200 mg twice daily vs. enalapril target dose 10 mg twice daily

\[\downarrow \text{NT-proBNP @ 4 and 8 weeks with sacubitril/valsartan} \]

No significant differences: worsening renal function, hyperkalemia, symptomatic hypotension, angioedema, or clinical events

Low Blood Pressure?
BP and HF Outcomes

- Low BP has been associated with lower survival in ambulatory patients with HF, but changes in BP with therapy have not

Models of BP Association to Mortality in HF

- Systolic BP 110 mm Hg
- Diastolic BP 70 mm Hg

- Systolic BP 140-150 mm Hg

GDMT, BP, and Outcomes

- COPERNICUS trial

All-Cause Mortality

- Favors carvedilol
- Favors placebo

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
Potential Benefits of Lower Blood Pressure in HF

- Reduced afterload
- Reduced ventricular wall tension
- Improved vascular vasoreactivity

 ▼

- Improved diastolic function
- Increased stroke volume
- Reduced myocardial oxygen consumption

Approach to Assessment of Low BP

- Symptomatic?
- Perfusing?
- Volume status?
- Separate dose administration times?
- Unnecessary polypharmacy?
Circling Back on Loops

Loop Diuretic Comparison

<table>
<thead>
<tr>
<th></th>
<th>Furosemide</th>
<th>Bumetanide</th>
<th>Torsemide</th>
<th>Ethacrynic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Potency</td>
<td>40</td>
<td>0.5-1</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Bioavailability (%)</td>
<td>≈50 (10-90)</td>
<td>>90</td>
<td>>90</td>
<td>100</td>
</tr>
<tr>
<td>Half-life (hours)</td>
<td>2-3</td>
<td>1-1.5</td>
<td>3-6</td>
<td>0.25-2</td>
</tr>
<tr>
<td>Duration of Action (hours)</td>
<td>6-8</td>
<td>4-6</td>
<td>18-24</td>
<td>2-4</td>
</tr>
<tr>
<td>Notes</td>
<td>Absorption reduced by meals</td>
<td>Absorption not reduced in HF; antifibrotic</td>
<td>No sulfur group</td>
<td></td>
</tr>
</tbody>
</table>

Torsemide vs. Furosemide in HF: Meta-Analysis of RCTs

HF READMISSIONS

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Size</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mueller et al. (2003)</td>
<td>237</td>
<td>0.62 (0.10, 3.79)</td>
</tr>
<tr>
<td>Murray et al. (2001)</td>
<td>234</td>
<td>0.25 (0.14, 0.45)</td>
</tr>
<tr>
<td>Stroupe et al. (2000)</td>
<td>193</td>
<td>0.43 (0.22, 0.85)</td>
</tr>
<tr>
<td>Overall</td>
<td>664</td>
<td>0.33 (0.22, 0.50)</td>
</tr>
</tbody>
</table>

MORTALITY

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Size</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mueller et al. (2003)</td>
<td>237</td>
<td>1.27 (0.43, 3.79)</td>
</tr>
<tr>
<td>Murray et al. (2001)</td>
<td>234</td>
<td>0.73 (0.37, 1.42)</td>
</tr>
<tr>
<td>Stroupe et al. (2000)</td>
<td>193</td>
<td>0.77 (0.37, 1.61)</td>
</tr>
<tr>
<td>Overall</td>
<td>664</td>
<td>0.82 (0.52, 1.28)</td>
</tr>
</tbody>
</table>

Torsemide vs. Furosemide in HF: Duke Experience

- N=4,580 admitted with HF to Duke Hospital (2000–2010), then discharged on either torsemide (14%) or furosemide (86%)

<table>
<thead>
<tr>
<th>Adjusted Model</th>
<th>Odds Ratio or Hazard Ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day mortality or hospitalization</td>
<td>1.22</td>
<td>0.1789</td>
</tr>
<tr>
<td>30-day hospitalization</td>
<td>1.29</td>
<td>0.1607</td>
</tr>
<tr>
<td>5-year mortality</td>
<td>1.09</td>
<td>0.2279</td>
</tr>
</tbody>
</table>

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
Approach to Selection of Loop in HFrEF

<table>
<thead>
<tr>
<th></th>
<th>Furosemide</th>
<th>Bumetanide</th>
<th>Torsemide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing for persistent volume overload</td>
<td>Twice daily</td>
<td>Two to three times daily</td>
<td>Once daily</td>
</tr>
<tr>
<td>Absorption issues</td>
<td>+</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Adherence issues</td>
<td></td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Higher doses needed</td>
<td>++</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ethacrynic Acid for true sulfonamide intolerance

Tools to Address Barriers for Optimizing Heart Failure Transitions of Care

Robert J. DiDomenico, Pharm.D., BCPS AQ Cardiology, FACC, FCCP, FHFSA
Associate Professor
Director, PGY2 Residency in Cardiology
University of Illinois at Chicago College of Pharmacy
Chicago, Illinois

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
How Do We Further Optimize Care for This Patient Prior to Discharge?

- HP is a 67-year-old African-American female with HFrEF (LVEF 18%) hospitalized for the first time for acute heart failure. Poor historian, lives with her daughter who assists with her care
- Current medications: enalapril 10 mg once daily, metoprolol tartrate 25 mg twice daily, furosemide 20 mg once daily, metformin 500 mg twice daily, atorvastatin 40 mg daily, levothyroxine 0.1 mg daily, enteric-coated aspirin 81 mg daily
- Vitals: BP 109/67 mm Hg, HR 84 bpm, RR 18 breaths/min
- Pertinent labs:
 - Sodium 136 mEq/L, potassium 4.8 mEq/L, creatinine 1.22 mg/dl, BUN 23 mg/dl, eGFR 46 mL/min/m²

Clinical Predictors of HF Readmission Opportunities for Improvement?

- Acute coronary syndrome, ischemia
- Increasing age
- Anemia
- Arrhythmia
- Depression
- Hyponatremia
- Low LVEF
- NYHA class IV symptoms
- Pneumonia/respiratory pathology
- Suboptimal HF medication regimen
- Uncontrolled hypertension
- Worsening renal function

GDMT for Patients with HFrEF at Discharge
Are we optimizing regimens?

*Only 23% of patients had GDMT modified before discharge

GDMT Modification During Hospitalization Impacts Survival

Adjusted Hazard Ratio 0.41 (95% CI, 0.23-0.71) vs. no therapy
Hazard Ratio 1.30 (95% CI, 1.02-1.66) vs. maintaining therapy

Tran RH. Pharmacotherapy. 2018; 38:406-16.
Consider Additional GDMT for HFrEF

- ACEI or ARB
- Beta-blocker
- Diuretic
- Aldosterone antagonist
- Hydralazine/nitrate
- Sacubitril/valsartan
- Ivabradine
- Digoxin

Hospitalization = Opportunity to Titrate Dose!

- Generally, consider titrating doses of GDMT every 2 weeks

<table>
<thead>
<tr>
<th></th>
<th>Starting Dose</th>
<th>Target Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisoprolol</td>
<td>1.25 mg daily</td>
<td>10 mg daily</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>3.125 mg twice daily</td>
<td>25-50 mg twice daily</td>
</tr>
<tr>
<td>Metoprolol succinate</td>
<td>12.5-25 mg daily</td>
<td>200 mg daily</td>
</tr>
<tr>
<td>Sacubitril/valsartan</td>
<td>24/26-49/51 mg twice daily</td>
<td>97/103 mg twice daily</td>
</tr>
<tr>
<td>Captopril</td>
<td>6.25 mg three times daily</td>
<td>50 mg three times daily</td>
</tr>
<tr>
<td>Enalapril</td>
<td>2.5 mg twice daily</td>
<td>10-20 mg twice daily</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>2.5-5 mg daily</td>
<td>20-40 mg daily</td>
</tr>
<tr>
<td>Candesartan</td>
<td>4-8 mg daily</td>
<td>32 mg daily</td>
</tr>
<tr>
<td>Losartan</td>
<td>25-50 mg daily</td>
<td>150 mg daily</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>12.5-25 mg daily</td>
<td>25-50 mg daily</td>
</tr>
<tr>
<td>Eplerenone</td>
<td>25 mg daily</td>
<td>50 mg daily</td>
</tr>
<tr>
<td>Hydralazine/isosorbide dinitrate</td>
<td>25/20 mg three times daily</td>
<td>75/40 mg three times daily</td>
</tr>
</tbody>
</table>

GDMT Dose Matters!
Dose-dependent Effect on Left Ventricle

• MOCHA
 – Dose-related increase in LVEF with carvedilol

• REVERT
 – Dose-dependent improvement in left ventricular remodeling

GDMT Dose-dependent Effect on Outcomes

<table>
<thead>
<tr>
<th>Trial</th>
<th>Hazard Ratio for death or HF hospitalization</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS (lisinopril)</td>
<td>0.85</td>
<td>0.78-0.93</td>
</tr>
<tr>
<td>HEAAL (losartan)</td>
<td>0.90</td>
<td>0.82-0.99</td>
</tr>
<tr>
<td>Egiziano et al.</td>
<td>ACEI: 0.91</td>
<td>0.87-0.95</td>
</tr>
<tr>
<td></td>
<td>ARB: 0.85</td>
<td>0.77-0.95</td>
</tr>
</tbody>
</table>

Beta-blockers

| HF-ACTION | 0.96 per 10-mg dose increase | 0.93-0.99 |
| McAlister et al. | No dose-response relationship | |

GDMDT Dose Matters!
Dose-dependent Effect on Mortality

ACEI or ARB

Hazard Ratio (95% CI) vs. ≥100%
1.76 (1.54-1.98)
1.50 (1.33-1.67)
0.82 (0.61-1.02)

Beta-Blockers

Hazard Ratio (95% CI) vs. ≥100%
2.41 (2.13-2.68)
1.91 (1.74-2.08)
1.29 (1.07-1.51)

GDMDT Dosing: Room For Improvement!

CHAMP-HF (U.S.)

ACEI/ARB/ARNI

Beta-blockers

MRA

< 50% target dose
50-100% target dose
≥ 100% target dose

CHECK-HF (Dutch)

ACEI/ARB

Beta-blockers

MRA

Beta-Blocker Dosage Adjustments During & After Hospitalization

In-Hospital Dosage Adjustment

- Carvedilol
- Metoprolol succinate

- Decreased
- Unchanged
- Increased

Dosage Adjustment At 60-90 days

- Carvedilol
- Carvedilol-new
- Metoprolol succinate
- Metoprolol succinate-new

- Decreased
- Unchanged
- Increased

~23% patients have dose increased

Mean daily doses at discharge

- Carvedilol: 12.5-17.8 mg
- Metoprolol: 57.5-68.3 mg

Mean daily dose

- Carvedilol: 16.9–20.3 mg
- Metoprolol: 68.6–68.7 mg

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
Effective Care Transitions to Optimize Post-Discharge Outcomes

Patient Education & Discharge Counseling
Heart Failure and Post-Myocardial Infarction

- Address barriers
- Perform thorough review of medications
- Use inpatient and outpatient settings
- Assess readiness to learn
- Vary teaching methods
- Engage caregivers
- Engage other team members

- Optimize written materials
- Emphasize self-care
- Employ teach-back method
- Assess patient resources
- Refer to disease management programs
- Focus on smooth care transitions

Inpatient Medication Histories & Reconciliation
Clinical & Economic Outcomes

Medication Histories
• ↓ Adverse drug events (ADEs)
• ↓ Drug costs
• ↓ Total costs
• ↓ Inpatient mortality

Medication Reconciliation
• ↓ Medication discrepancies
• ↓ Potential ADEs
• ↓ Preventable ADEs
• ↓ Health care resource use

Pharmacist Involvement in TOC Improves Outcomes!
OPTIMIST Study

![Graph showing cumulative risk of readmission or ED visit over time]

Usual care (n=498)
Basic intervention (n=493)
Extended intervention (n=476)

Basic intervention: Hazard Ratio 0.94 (0.79-1.13)
Extended intervention: Hazard Ratio 0.77 (0.64-0.93)

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
OPTIMIST Study Design

Transition of Care Interventions

Inclusion Criteria
- Age ≥18 years
- Polypharmacy (≥5 chronic meds)

Usual Care
Not described

Basic Intervention
- Med review by pharmacist
 - Meds of interest/focus: aspirin, diuretics, OACs, NSAIDS
- Propose med changes, if appropriate
- Communicate with physicians via EMR ± verbally

Extended Intervention
- Basic Intervention
- Med reconciliation at discharge
- Motivational interview/education
- Fax/mail PCPs: drug-related problems
- Day 3: Call to PCP, caregiver, & pharmacy
- Week 1, 6 months: f/u phone call

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
Heart Failure Transitions of Care Programs
Barriers & Potential Solutions

Barriers
- Lack of time/resources
- Patient out-of-pocket costs/insurance issues
- Lack of administration/leadership support

Potential Solutions
- Utilize technicians ± students
- Focus intervention(s) on ”high-risk” patients
- Partner with outpatient pharmacy
- Bill for MTM services?

Pharmacy Student Medication Reconciliation

Student-managed services
- Pharmacist “reach” ↑ more than 2-fold
- Clinical interventions
- Post-discharge calls

RXCARES
- Reconciliation
- X-Drug Interaction
- Coordination & Communication
- Access & Adherence
- Risk reduction
- Evidence-Based Medicine review / Elimination of meds
- Savings

MoPhE
- Mobile Pharmacy Education

Lancaster JW. *Am J Pharm Educ.* 2014; 78:34.

Bursua A, Thambi M.
University of Illinois Hospital.

©2019 American Society of Health-System Pharmacists, Inc. All rights reserved.
Focus Efforts on “High-Risk” Patients

• Targeted patients (e.g., elderly, polypharmacy)
 – OPTIMIST: ≥5 meds
 – RXCARES
 • ≥10 meds
 • Age ≥65 AND ≥5 meds OR ≥2 admissions in last 1 year

• Targeted medications/disease states
 – MoPhE: anticoagulants, diabetes, inhaler technique

• Utilize EMR/Clinical Decision Support?

Reimbursement for Transitions of Care?

• Several inpatient clinical pharmacy services eligible under evaluation & management inpatient procedural codes
 – History-taking, physical exam, medical decision-making
 – Categorized by complexity

• Medicare/Medicaid ineligible

Steps to Consider
1. Review payer mix
2. Review state laws governing MTM criteria
3. Establish billing values with finance department
4. Pharmacist must conduct face-to-face visit & document
5. Establish reporting system

Optimizing GDMT for Patients with HFrEF
What Should Be in Your Toolkit?

- Knowledge to identify & resolve clinical barriers for optimization of GDMT
- Skills for medication histories, reconciliation, & patient education for appropriate patients
- Post-discharge follow-up
- Human resource management
 - More efficient use of technicians ± students
- Reimbursement capabilities (MTM billing?)

Selected Resources

Guidelines & Consensus Statements

Other Selected Resources

Consider these practice changes. Which will you make?

- Read the 2017 ACC Expert Consensus Pathway.
- Compare my organization’s protocols with the most up to date heart failure treatment guidelines.
- Evaluate my organization’s utilization & escalation of GDMT for HFrEF prior to discharge.
- Assess my pharmacy department’s participation in care transitions (e.g., frequency of medication histories upon admission & medication reconciliation upon discharge, participation in patient education).
- Engage both patients & caregivers in educational encounters.
- Determine the feasibility of post-discharge pharmacist involvement (e.g., post-discharge telephone contact, multidisciplinary clinic).